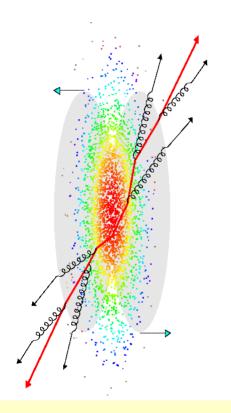

Measurement of Jet Properties in p+p and Au+Au


Jan Rak for PHENIX

Department of Physics and Astronomy

IOWA STATE UNIVERSITY

Hard scattering in Heavy Ion collisions

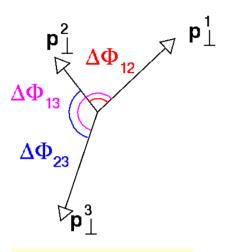
schematic view of jet production

Particle production @RHIC

 $-dn_{ch}/d\eta \mid_{\eta=0} = 670$, $N_{total} \sim 7500$ 92% of (15,000) all quarks from vacuum!

Jets @RHIC:

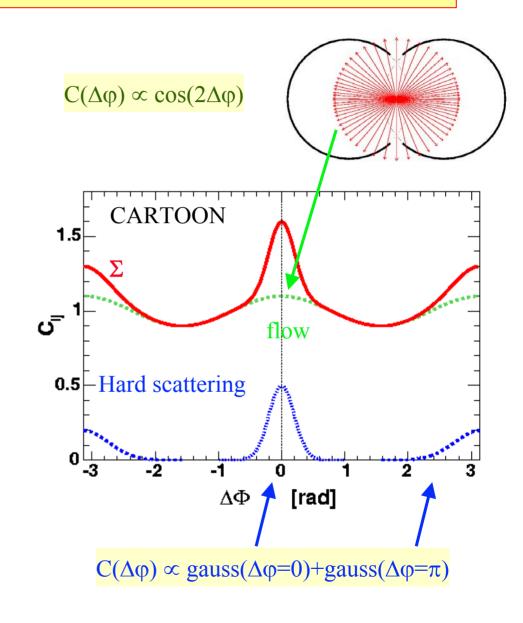
- -produced early $\tau < 1 \text{fm}$
- -primarily from gluons
- -30-50% of particle production


Observed via:

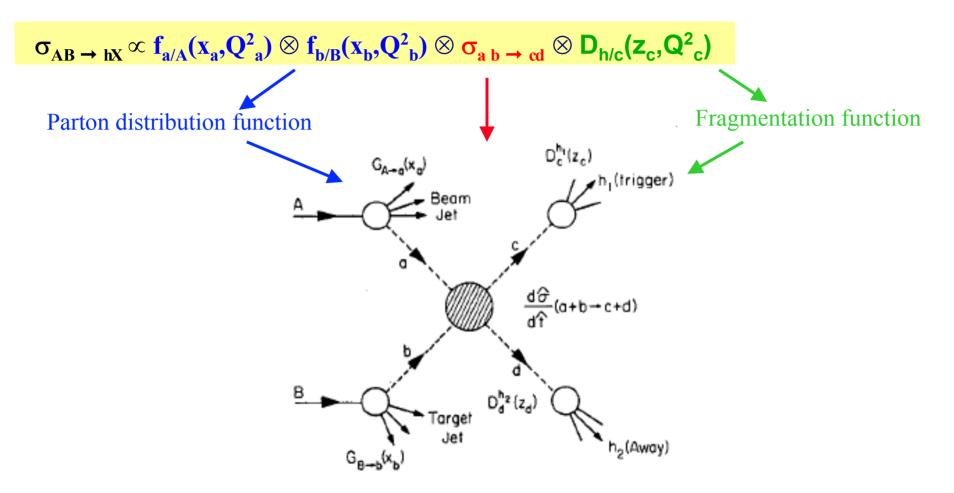
- —fast leading particles
- -azimuthal correlations

Scattered partons radiate energy in colored medium

- \rightarrow suppression of high p_t particles R_{AA}
- \rightarrow modification of azimuthal correlation between jet fragments $\langle k_T \rangle$


Two-Particles Correlation Function

$$C_{ij}(\Delta\phi) = \frac{dN_{ij}}{d\Delta\phi_{ij}}$$


We observe a sum of

- >Flow anisotropy (cos)
- >Hard scattering peaks (gauss)

pQCD collinear factorization

Production yield in hard-scattering regime factorizes

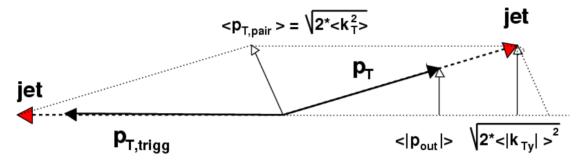
 $D_{h/c}(z_c, Q_c^2) \approx \text{production probability of hadron } h \text{ (momentum fraction } z_c = p_{Th}/p_{Tc}) \text{ from parton } c$

Jet Shape Parameters

$$\langle k_{\perp}^{2} \rangle = \langle k_{\perp}^{2} \rangle_{\text{vac}} + \langle k_{\perp}^{2} \rangle_{\text{IS nucl}} + \langle k_{\perp}^{2} \rangle_{\text{FS nucl}}$$

parton

 $\langle |\mathbf{k}_{\perp \mathbf{v}}| \rangle$ = the mean effective transverse momentum of the two colliding partons in the plane perp. to the beam axis.

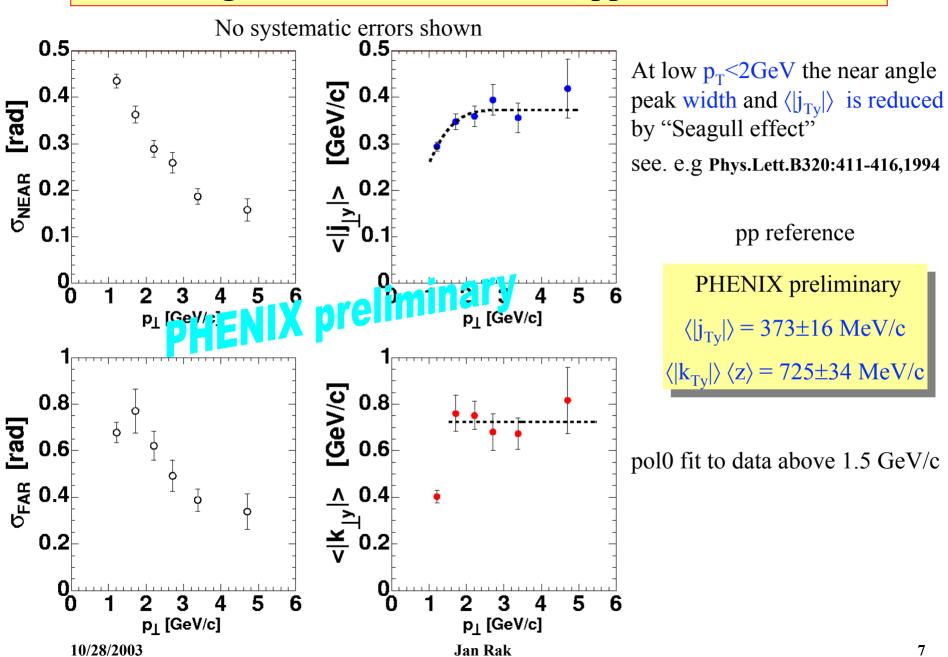

 $\langle |j_{\perp \nu}| \rangle$ = the mean transverse momentum of the hadron with respect to the jet axis in the plane perpendicular to the beam axis.

$$\langle |j_{\perp y}| \rangle$$
 = the mean transverse momentum of the hadron with respect to the jet axis in the plane perpendicular to the beam axis.
$$|p_{\perp 1}| = \frac{1}{\sqrt{\pi}} \sqrt{\langle j_{\perp}^2 \rangle} = \langle p_{\perp} \rangle \sin \frac{\sigma_N}{\sqrt{\pi}}$$

$$\langle |k_{\perp y}| \rangle \ \langle z \rangle \approx \langle p_{\perp} \rangle \sqrt{\sigma_F^2 - \sigma_N^2}$$

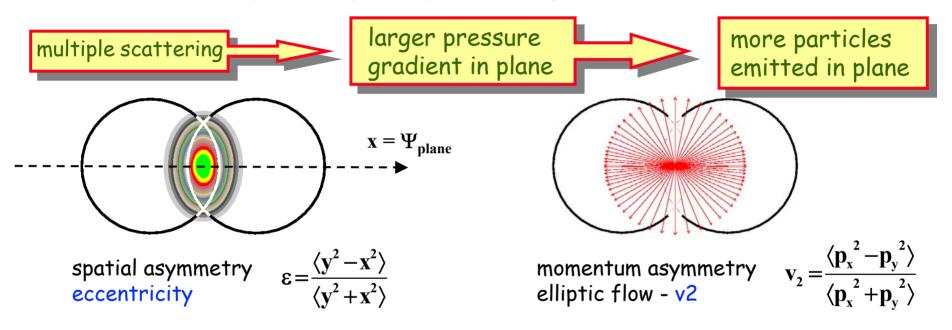
Out of the plane momentum component

p_{out} the component of momentum out of the plane formed by the beam and the trigger particle


In simplified case of collinear fragmentation – no jet frag. trans. mom. $\langle |j_{Tv}| \rangle = 0$

$$\langle |\mathbf{p}_{\text{out}}| \rangle^2 = 2 \langle |\mathbf{k}_{\text{Ty}}| \rangle^2 \langle \mathbf{z} \rangle^2 \langle \mathbf{x}_{\text{h}} \rangle^2 \approx \langle \mathbf{p}_{\text{T}} \rangle^2 \sin(\sqrt{2/\pi} \ \sigma_{\text{F}})$$

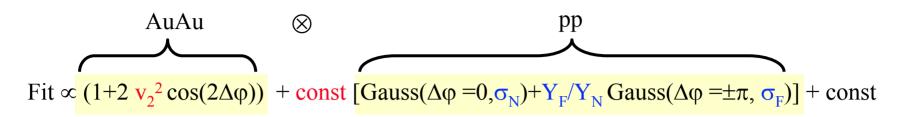
 $\langle z \rangle$ - derived from high- p_T inclusive $d\sigma/dp_T$ $\langle x_h \rangle, \langle p_T \rangle^2$ and σ_F measured.


Taking into account the mean jet fragmentation transverse momentum $\langle |j_{Ty}| \rangle > 0$ makes the formula more complex, but the idea is the same. If you really want to see it, ask me in the discussion.

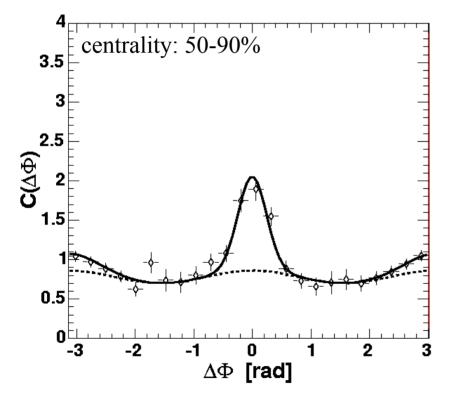
charged hadrons correlation in pp $\sqrt{s} = 200 GeV$

In AA some algebra of v2+jets needed

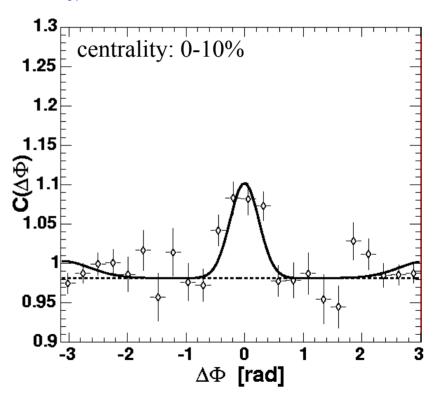
In AuAu collisions the situation is more complicated by presence of "global" correlations induced by nuclear geometry - called elliptic flow.


$$C(\Delta \varphi) = \frac{d^2 N}{d\Delta \varphi} = \int_{-\pi}^{\pi} \frac{dN}{d\varphi} \frac{dN}{d(\varphi + \Delta \varphi)} d\varphi \qquad \frac{dN^{\text{FLOW}}}{d\varphi} \propto (1 + 2v_2 \cos(2(\varphi - \Psi))) \oplus \frac{dN^{\text{JET}}}{d\varphi} \propto Gauss(\varphi, \varphi)$$

$$C(\Delta \varphi) \propto (1 + 2v^2 \cos(2\Delta \varphi)) + Gauss(\Delta \varphi, \sqrt{2}\sigma) + Crossterm(\varphi_{jet} - \Psi)$$

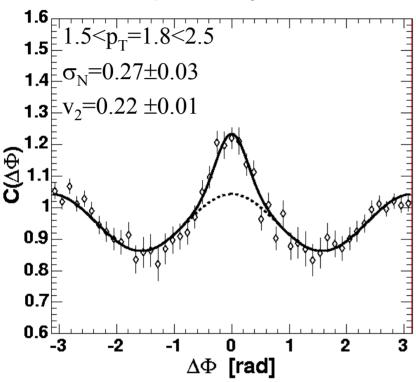

Flat if no correlation between Ψ_{plane} and jet thrust

8


AuAu charge hadrons correlation 2.2<pT<5.0 GeV/c

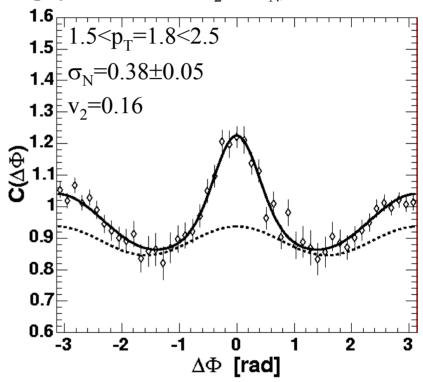
 v_2^2 determined from the fit σ_N , σ_F , $Y_F = \int gauss(0) / Y_N = \int gauss(\pm \pi)$ fixed values taken from pp

Flow and jet part can be clearly separated.



Fit forces $v_2 \rightarrow 0$, it indicates the lack of back-to-back correlation

Far angle peak width in AuAu, v2-reduction


AuAu $\sqrt{s} = 200$ GeV centrality 50-90%

(this is only for illustration, not a physics result on v_2 or σ_N)

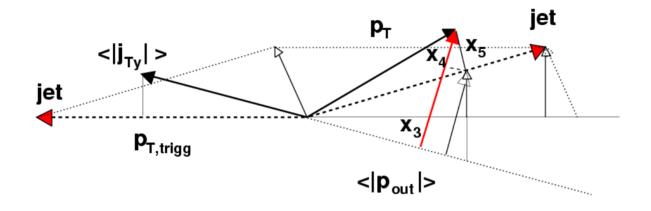
Fit $\propto (1+2v^2 \cos(2\Delta\varphi)) + Gauss(0)$

Omitting the back-to-back part leads to v_2^2 overestimation and consequent reduction of σ_N

Fit $\propto (1+2v_2^2\cos(2\Delta\varphi)) + Gauss(0)+Gauss(\pm\pi)$

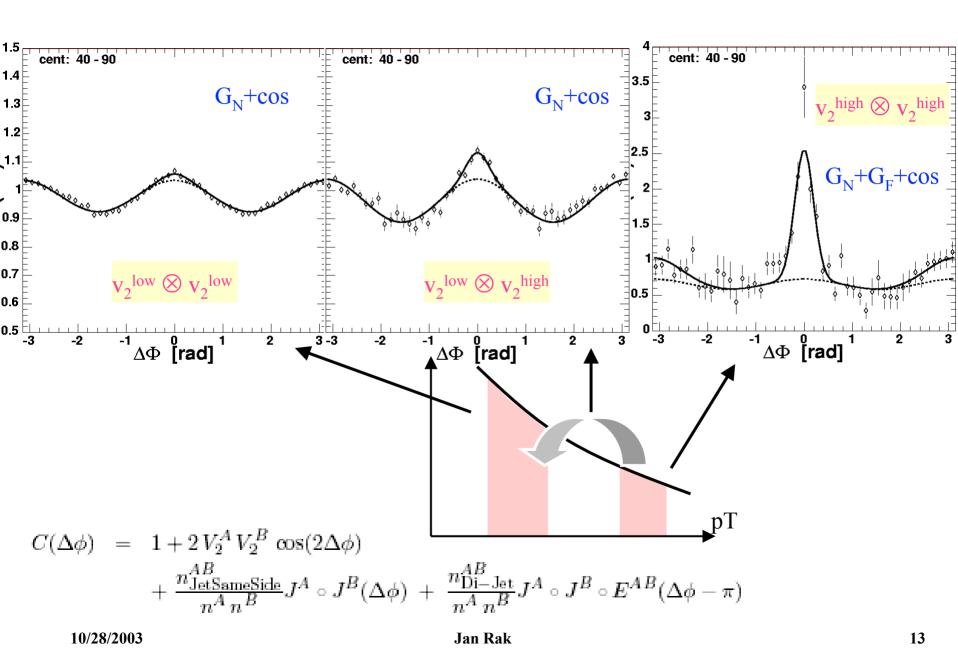
Reduced v_2^2 is fixed

In this case the σ_N has the same value as in pp and back-to-back part can be subtracted.


Summary

• mean jet fragmentation transverse momentum $\langle |j_{Ty}| \rangle$ and the intrinsic partonic transverse momentum $\langle |k_{Ty}| \rangle$ were measure in pp collisions at $\sqrt{s_{NN}}$ =200GeV.

• Jet-like structure also observed in AuAu correlation functions. The extraction of jet parameters complicated be presence of elliptic flow correlation pattern. Various techniques of simultaneous fitting are investigated.


• Extraction of $\langle |j_{Ty}| \rangle$, $\langle |k_{Ty}| \rangle$ and fragmentation function from d-Au and AuAu data is in progress.

Complete formula

$$\sin^{2}\left(\sqrt{\frac{2}{\pi}}\sigma_{F}\right) = \frac{x_{h}^{2}}{\langle p_{\perp}\rangle^{2}} \left[2\langle k_{\perp y}\rangle^{2}\langle z\rangle_{trigg}^{2}\left(1 - \frac{\langle |j_{\perp,y}|\rangle^{2}}{\langle p_{\perp,Trigg}\rangle^{2}}\right) + \langle |j_{\perp,y}|\rangle^{2}\cos\Delta\phi\right] + \frac{\langle |j_{\perp,y}|\rangle^{2}}{\langle p_{\perp}\rangle^{2}} \left(1 - \frac{\langle k_{\perp y}\rangle^{2}\langle z\rangle_{trigg}^{2}}{\langle p_{\perp,Trigg}\rangle^{2}}\right) + \frac{\langle |j_{\perp,y}|\rangle^{2}\cos\Delta\phi}{\langle p_{\perp}\rangle^{2}} \left(1 - \frac{\langle k_{\perp y}\rangle^{2}\langle z\rangle_{trigg}^{2}}{\langle p_{\perp,Trigg}\rangle^{2}}\right)$$

Simultaneous fitting

